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Evaluation of the effects of metformin on gut [}
functions and microbiota and their contribution
to improving glucose tolerance in diabetic mice
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ABSTRACT

Objectives: Although the mechanism of action of the antidiabetic drug metformin is still a matter of discussions, increasing evidence points to
a pivotal role of the gut. Aiming to clarify whether metformin-induced changes in the intestinal tract directly contribute to metabolic
improvement, we evaluated the effects of escalating doses (from 50 to 200 mg/kg/day) of metformin orally administered for 4 weeks in mice
made glucose intolerant by ten weeks of high fat high sucrose diet.

Methods: Several intestinal parameters were studied, including caecal microbiota composition and bile acids profile, ileal FXR signaling,
abundance of GLP1-producing cells and goblet cells and blood metabolome.

Results: Metformin restored glucose tolerance, fasting insulinemia and HOMA-IR index in a dose-dependent manner. Only a subset of gut-
related effects, including mucus production and GLP-1 expression, exhibited a parallel dose—response relationship, suggesting a possible
contribution to the observed metabolic improvements. In contrast, other changes, including ileal Fxr-Fgf15 inhibition and hepatic ceramide
reduction did not scale with dose, suggesting they are not the main drivers of metformin dose-dependent effects on glycemic control. We also
pointed out marked differential sensitivity of gut bacteria to metformin supporting complex interactions of the drug with the microbial
ecosystem.

Conclusion: Finally, metformin enhanced the proliferation of intestinal epithelium, resulting in increased length of ileal villi. Altogether, this
study offers new insights into the metformin mechanism of action and revealed potential novel microbial biomarkers and targets for enhancing

its therapeutic efficacy.
© 2025 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION proximal small intestine [11,12], reduced gastric emptying after an
oral glucose load [13,14] and stimulation of glucose uptake from the
circulation and its excretion into the gut lumen [15,16]. These

changes could contribute to improved glycemic control. In parallel,

Metformin (1,1-dimethylbiguanide hydrochloride) is the main oral
medication and first-line therapy for type 2 diabetes mellitus

(T2DM). While it is widely accepted that metformin lowers blood
glucose mainly by reducing endogenous glucose production in
diabetic patients, the exact mechanisms remain debated [1—3].
Several studies suggest a critical role of the intestinal tract,
particularly the gut microbiota [4—7]. Metformin modulates gut
microbiota composition [5,7], and has been associated with
increased abundance of some species such as Akkermansia
muciniphila [8,9] which have been linked to improved barrier and
metabolic function [10].

In addition to, or because of its impact on the microbiota, metformin
induces several changes in intestinal functions. These include effects
on glucose handling such as the inhibition of glucose absorption in the

metformin inhibits bile acid absorption by intestinal epithelium [17,18]
and modifies the bile acid pool, in part through an interplay with the
change in the gut microbiota [19]. Intestinal glucose retention and
increased luminal bile acid concentration are thought to stimulate the
production of the incretin hormone glucagon-like peptide 1 (GLP-1)
[19,20]. Furthermore, inhibition of bile acid absorption, together with
modification of the bile acid profile could also lead to inhibition of the
intestinal nuclear receptor FXR (Farnesoid X Receptor) [6,9] which
could impact whole-body metabolic control [21]. Finally, it has been
also evidenced that metformin activates goblet cells for mucin pro-
duction [8], contributing to the intestinal barrier protection. While
these different effects may contribute to metformin’s antidiabetic
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Figure 1: Metformin improves metabolic disturbances in a dose-dependent manner in HFS-fed mice. (A) Fasting plasma glucose levels (mg/dL) measured at sacrifice
after 6 h of fasting. (B) Fasting plasma insulin concentrations (ng/mL) measured at sacrifice after 6 h of fasting. (C) HOMA-IR index. (D) Intraperitoneal glucose tolerance test
(ipGTT, 1 g of glucose/kg of body weight) performed after 6 h of fasting at week 14 of treatment. Blood glucose levels were measured every 15 min over a 90-minute period. (E)
Area under the curve (AUC) calculated from ipGTT results and expressed in arbitrary units. (F) Fasting blood glucose levels (mg/dL) measured immediately before ipGTT initiation.
(G) Hepatic triglyceride content (nmol/mg liver tissue). (H) Representative images of Hematoxylin/Phloxin stained liver sections: control mouse (SD), HFS-fed mouse (HFS), and
HFS-fed mouse treated with 200 mg/kg of metformin (MET200). Magnification: 10 x ; scale bar: 100 um. Data are presented as means + SEM. *p < 0.05; **p < 0.01 (ANOVA)

and ® p < 0.05; *p < 0.01 (Tukey test, MET vs HFS condition).

action, their direct involvement in improved glucose metabolism re-
mains uncertain.

In a recent study using mice fed a high-fat, high-sucrose (HFS) diet for
8 days, we showed that metformin counteracts HFS-induced alter-
ations in key nutrient absorption genes in the small intestine, in-
creases A. muciniphila throughout the gut, and beneficially shifts the
profile of secondary bile acids in the caecum [9]. Specifically,

2

metformin reduced deoxycholic acid (DCA) and lithocholic acid (LCA),
while increasing ursodeoxycholic acid (UDCA) and tauroursodeox-
ycholic acid (TUDCA), alongside a marked inhibition of ileal Fxr
signaling, evidenced by reduced fibrobast growth factor 15 (Fgf15)
expression [9]. These findings align with data from T2DM patients
treated with metformin for 3 days, where increased TUDCA and
glycoursodeoxycholic acid (GUDCA) levels in stool were also linked to
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Figure 2: Abundances of metformin up-regulated bacteria in the caecum, expressed as rarefied counts. Data are presented as means + SEM.

FXR inhibition [6]. Additionally, beyond bile acids and Fxr, changes in
microbiota composition are associated with shifts in metabolites and
key hormones regulating metabolic pathways [22]. Several studies
report significant metabolome changes following metformin in bio-
fluids and tissue [23], including increased production of short-chain
fatty acids (SCFAs) by gut microbiota, as observed in clinical trials
[24,25].

To investigate how the effects of metformin in the gut contribute to its
systemic metabolic benefits, we conducted a four weeks dose—
response study in obese and glucose-intolerant mice induced by a
10-week HFS diet. We aimed to establish associations between
whole-body metabolic outcomes and the changes in intestinal pa-
rameters, including microbiota composition, caecal bile acids, ileal
FXR signaling, blood metabolome, and the abundance of GLP1-

producing cells and goblet cells in the small intestine and colon.
We found that metformin effects on a subset of these intestinal pa-
rameters showed a dose-dependent variation, highlighting differential
sensitivities and helping identify key intestinal mechanisms potentially
driving metformin systemic benefits.

2. RESULTS

2.1. Metformin improves metabolic disturbances in a dose—
response manner in HFS fed mice

HFS feeding induced metabolic disturbances in adult C57BL/6J male
mice, evidenced by increased fasting glucose and insulin levels
(Figure 1A,B) and impaired insulin sensitivity based on HOMA-IR
(Figure 1C), compared to standard chow diet (SD). Four weeks of
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Figure 3: Abundances of metformin down-regulated bacteria in the caecum, expressed as rarefied counts. Data are presented as means + SEM.
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metformin treatment tended to lower fasting glucose (Figure.1A) and
almost fully corrected hyperinsulinemia in a dose-dependent manner
(Figure 1B), restoring HOMA-IR at the highest dose (Figure 1C).
Glucose tolerance during ipGTT (intraperitoneal glucose tolerance
test), strongly impaired by HFS diet, was also corrected dose-
dependently by metformin (Figure 1D,E).

Regarding body composition, metformin slightly reduced fat mass and
increased lean mass, with significant effects mainly at the highest
dose (Supplementary Fig. 1A and B). Liver weight was reduced in
HFS-fed mice treated with metformin (Supplementary Fig. 1C),
alongside a marked decrease in hepatic steatosis, as shown by tri-
glyceride assay and lipid droplet staining (Figure 1G,H). Notably, this
liver fat reduction was already evident at the lowest dose (Figure 1G).
Finally, metformin dose-dependently restored caecum weight
(Supplementary Fig. 1D), a change often associated with altered gut
microbiota.

2.2. Metformin modifies caecal microbiota composition in a dose-
dependent manner in HFS-fed mice

The Shannon index of alpha diversity (Supplementary Fig. 2A) was not
significantly different between groups, indicating that bacterial rich-
ness was not markedly affected, although diversity tended to
decrease at the highest metformin dose (MET200). However, met-
formin exerted a dose-dependent impact on microbiota composition
at the phylum level (Supplementary Fig. 3A and B). HFS feeding
increased Bacillota (formerly Firmicutes) and decreased Verrucomi-
crobiota, whereas metformin reversed these changes, significantly
reducing Bacillota and increasing Verrucomicrobiota. Bacteroidota
were globally unaffected (Supplementary Fig. 3B). Metformin also
altered less abundant phyla. Thermodesulfobacteriota, increased by
HFS diet, were nearly eliminated by metformin at the highest dose and
Pseudomonadota, reduced by HFS, were restored in a dose-
dependent manner by metformin (Supplementary Fig. 3B).

Beta diversity analysis (Supplementary Fig. 2B) confirmed distinct
microbiota compositions between groups, with major effects of the
HFS diet versus SD, but also clear differences between untreated and
metformin-treated mice, especially at MET200. Using MaAsLin2, we
identified 86 ASVs significantly different between metformin and HFS
groups (with corrected q values < 0.05). These ASVs were further
annotated using Nucleotide BLAST®, enabling genus and, in some
cases, species-level identification (Supplementary Table 1).
Metformin increased various members of the Bacteroidaceae
(B. uniformis, B. congonensis), Lactobacillaceae (L. johnsonii,
L. reuteri, L. murinus), Lachnospiraceae (B. hominis, 0. muris,
Lachnoclostridium), Rikenellaceae (Alistipes, Rikenella), Erysipelo-
trichaceae (F. rodentium, Holdemania), Christensenellaceae (Candi-
datus, Guopingia), Enterococcaceae, Sutterellaceae
(P. excrementihominis), Enterobacteriaceae (E. coli), and Akkerman-
siaceae (A. muciniphila) (Supplementary Table 1). Notably, as shown
in Figure 2, many up-regulated bacteria were suppressed by HFS and
restored by metformin—e.g., A. muciniphila, L. reuteri, F. rodentium,
A. timonensis, Guopingia. Others, slightly increased by HFS, were

boosted by metformin in a dose-dependent manner (e.g.,
B. uniformis, L. murinus). Some were detected only with metformin,
including B. hominis, E. avium, and E. coli (Figure 2). Dose-dependent
responses varied: most taxa were unaffected by MET50, except
M. muribaculum and 0. muris, which peaked at this dose, while
L. johnsonii, B. congonensis, and G. faecalis responded only at
MET200 (Figure 2). Others responded progressively between MET100
and MET200, with A. muciniphila already maximally increased at
MET100, indicating differential bacterial sensitivity to metformin.
Conversely, metformin reduced bacteria from families such as
Lachnospiraceae, O0scillospiraceae, Rikenellaceae, Clostridiaceae,
Desulfovibrionaceae, and Eubacteriales incertae sedis, with Lachno-
spiraceae comprising 42 % of the significantly decreased bacteria
(Supplementary Table 1). Several genera linked to metabolic disor-
ders or type 2 diabetes (Dorea, Bilophila, Desulfovibrio, Acetatifactor,
Robinsoniella) were down-regulated by metformin (Supplementary
Table 1). Among down-regulated bacteria (Figure 3), most were
increased by HFS and suppressed by metformin, returning to control
or lower levels at MET200. Several taxa were highly sensitive to
MET50, including Coprococcus, A. muris, Ruminiclostridium, Intesti-
nimonas. Others, such as A. finegoldii, O. valericigenes, Pseudo-
flavonifractor,  Robinsoniella,  Peptococcus, showed gradual
reductions from MET50 onward. Bilophila, F. butyricus,
A. lactatifermentans, Roseburia, and Dorea were affected only at
MET100 or MET200. A few taxa unaffected by HFS were reduced only
at high metformin doses (e.g., F. intestinalis, A. massilensis, Mur-
ibaculaceae, Desulfovibrio) again reflecting variable sensitivity
(Figure 3).

We also assessed metformin’s effects in the colon and small intestine.
16S rRNA sequencing on DNA from ileal and colonic tissue revealed
high concordance between caecum and colon. About 90 ASVs were
regulated by MET200 in the colon (29 up-, 60 down-regulated,;
p < 0.05), with 61 overlapping those found in the caecum
(Supplementary Fig. 4B). Key up-regulated taxa in colon included
A. muciniphila, L. johnsonii, L. reuteri, B. hominis, P. goldsteinii, and
E. coli whereas down-regulated taxa were mostly from Lachnospir-
aceae, Oscillospiraceae, Rikenellaceae, and Desulfovibrionaceae
(Bilophila, Desulfovibrio) (Supplementary Fig. 4A). In the small intes-
tine (ileum), low abundance limited the sequencing quality and sta-
tistical power. A few number of taxa showed modest metformin
responses, but A. muciniphila, L. johnsonii, L. reuteri, B. hominis, and
P. excrementihominis were clearly up-regulated (Supplementary
Fig. 4C).

2.3. Metformin increases mucus barrier and endocrine L-cells in
the colon of HFS-fed mice

Bacteria such as Akkermansia, Lactobacilli and Blautia (increased
by metformin) have been linked to improved epithelial barrier
function and enhanced GLP-1 production by L-cells. We first
assessed mucus content and goblet cells in the colon. Figure 4A
shows that mucus-filled vesicles (blue-stained) were increased in
metformin-treated mice. Quantitatively, although the HFS diet did

Figure 4: Metformin enhances mucus barrier and increases L-cell abundance in the colon of HFS-fed mice. (A) Representative images of colon sections stained with
Alcian Blue, highlighting mucin-producing goblet cells. Images are shown for a control mouse (SD), an HFS-fed mouse (HFS), and an HFS-fed mouse treated with 200 mg/kg of
metformin (MET200). Magnification: 20 x ; scale bar: 100 um. (B) Violin plots showing the percentage of Alcian Blue-positive vesicles (mucus) area covering the epithelium. (C)
Relative expression of Muc2 mRNA in colon samples measured by RT-qPCR (data are means + SEM and expressed as arbitrary units, normalized to Tbp expression). (D)
Representative images of colon sections stained for GLP-1-positive L-cells (pink), with nuclei counterstained in blue using DAPI. Images are shown for each treatment group as in
panel A. Magnification: 40 x ; scale bar: 100 um. (E) showing the quantification of GLP-1-positive cells per colonic crypt. (F) Relative expression of Gcg mRNA in colon samples
measured by RT-qPCR (means == SEM, arbitrary units as in C). In the violin plots, horizontal lines represent the data quartiles. *p < 0.05; **p < 0.01; ***p < 0.001 (ANOVA)

and ® p < 0.05 (Tukey test, MET vs HFS condition).
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not significantly affect mucus vesicle percentage, it was markedly
increased after 4 weeks of MET200 treatment (Figure 4B). Muc2
gene expression, encoding mucin 2, was significantly reduced by
HFS feeding and dose-dependently restored by metformin in the
colon (Figure 4C).

Regarding entero-endocrine cells in colon, immunohistology revealed
that GLP-1-positive cell numbers were unchanged by HFS diet but
increased with metformin treatment (Figure 4D,E). At the transcrip-
tional level, HFS diet lowered Gcg expression (encoding GLP-1), while
metformin restored Gcg expression at the highest dose (MET200)
(Figure 4F).

2.4. High-fat sucrose diet and metformin affect intestinal
epithelium morphology and differentiation in mice

In addition to goblet cell maturation, and mucus production, recent
findings suggest that metformin protects the intestinal barrier by
promoting epithelial cell proliferation [26]. We thus quantified Ki67, a
classical proliferation marker. Immunohistology showed that HFS
raised Ki67-positive cell numbers in ileal crypts and that metformin
further amplified this effect (Figure 5A,B). Importantly, the length of
the ileal villi was increased by HFS diet, an effect further enhanced by
metformin (Figure 5C). We then measured mRNA levels of Ccnd1
(cyclin D1), a key proliferation factor, and Ngn3 (neurogenin 3), critical
for enteroendocrine cell differentiation. Unlike Ki67, Ccnd1 expression
was reduced by HFS in the ileum, and metformin dose-dependently
restored it (Figure 5D). Ngn3 expression increased with HFS but
was not altered further by metformin (Figure 5E).

In the colon, HFS increased Ki67-positive cells in crypts, but met-
formin had no additional effect (Figure 5F,G). Ccnd1 expression was
slightly reduced by HFS and unaffected by metformin (Figure 5H). In
contrast, Ngn3 expression increased dose-dependently with metfor-
min (Figure 5I), aligning with the rise in GLP-1-positive L-cells in the
colon (Figure 4D,E).

2.5. Metformin modifies the bile acid pool in the gut and inhibits
the Fxr-Fgf15 pathway in the ileum of HFS-fed mice

Gut microbiota is a key determinant of bile acid metabolism, driving
the formation of secondary bile acids. Bile acid profiling was per-
formed on caecal content at the end of treatment. As shown in
Figure 6A, HFS diet significantly increased total bile acid levels,
affecting both primary (CDCA, CA, BMCA) and secondary (DCA, LCA,
HDCA, wMCA, UDCA) species. After 4 weeks of treatment, metformin
(MET200) attenuated this effect, leading to an increased primary-to-
secondary bile acid ratio and reduced hydrophobicity index
(Figure 6A).

The caecal abundance of 12a.-hydroxylated bile acids (12a.0H BA),
considered deleterious, was strongly increased by HFS and reduced
by metformin. Metformin also shifted the conjugation pattern,
increasing tauro-conjugated and decreasing sulfo-conjugated bile
acids (Figure 6A). In addition, the sum of bile acids known as FXR
agonists (CDCA, CA, wMCA, HDCA), which were elevated under HFS,
were reduced by metformin, while the sum of FXR antagonists (BMCA,
UDCA, TUDCA, TMCA) remained unchanged, resulting in a

significantly increased antagonist/agonist ratio (Figure 6A). The indi-
vidual level of bile acid species is shown in Supplementary Fig. 5.
Notably, metformin strongly reduced the relative adundance of CA-7S
(cholic acid-7-sulfate) and wMCA, while TMCA, a well-known FXR
antagonist, was elevated.

We next assessed the Fxr-Fgf15 pathway in the ileum. Fgf15 and
Nrob2 (Shp), direct Fxr target genes, were strongly downregulated by
metformin, whereas Nrih4 (encoding Fxr) was unchanged
(Figure 6B). This molecular signature aligned with the observed bile
acid shifts. Importantly, Fxr pathway inhibition was already evident at
the lowest concentration of metformin and was not dependent of the
dose (Figure 6B).

2.6. Metformin reduced ceramide concentrations in the liver of
HFS-fed mice

Inhibition of Fxr in the ileum improves metabolic regulation and insulin
resistance in rodents, possibly via reduced ceramide production and
hepatic accumulation [21]. We therefore quantified liver ceramide
species. As shown in Figure 7A, a 4-week metformin treatment
significantly decreased several ceramide species in HFS-fed mice,
especially C16- and C18-ceramides, which are strongly linked to
insulin resistance and impaired insulin signaling [27]. Longer-chain
ceramides (C22, C24) were also lowered by metformin, although
not significantly (Figure 7A). Additionally, C24:1 ceramide, which has
been associated with inflammation and cardiometabolic risk, was not
increased by HFS but was significantly reduced by metformin.
Notably, these effects were not dose-dependent and were observed
even at the lowest metformin dose (Figure 7A).

To assess plasma ceramides, we conducted a parallel experiment
using metformin at 300 mg/kg (MET300), following the same design
(10-week HFS diet + 4-week treatment). Supplementary Fig. 6
confirms that MET300 similarly affected fasting glycemia, insuline-
mia, and ipGTT compared to MET200 (Supplementary Fig. 6A vs
Figure 1D,E). Inhibition of the Fxr-Fgf15 axis in the ileum was also
replicated at this dose (Supplementary Fig. 6B vs Figure 6B). Under
these conditions, plasma ceramides were quantified by LC-MS/MS.
HFS increased total and various d18:1 ceramide species, but unlike
in the liver, plasma ceramide levels were not significantly altered by
metformin (Figure 7B), suggesting a liver-specific action of metformin
on ceramide metabolism. Supporting this, Smpd3 expression
(encoding sphingomyelin phosphodiesterase 3) in the liver was
upregulated by HFS and dose-dependently inhibited by metformin
(Figure 7C), while Cers4 and Cers6 expression remained unchanged
(Figure 7C).

2.7. Metformin modifies plasma concentrations of microbiota-
derived metabolites in HFS-fed mice

Further plasma metabolome analyses in MET300-treated mice
revealed that metformin altered concentrations of several metabolites
compared to HFS controls. Using PLS-DA (Supplementary Fig. 7A), we
identified a metabolite signature distinguishing the HFS and MET300
groups. Key discriminant metabolites included p-cresol sulfate,
homoarginine, and various triglyceride species with at least 4

Figure 5: High-fat sucrose diet and metformin alter intestinal epithelial morphology and differentiation. (A) Representative images of ileal sections stained for Ki67-
positive cells (pink), with nuclei counterstained in blue using DAPI. Images are shown for control mouse (SD), HFS-fed mouse (HFS), and HFS-fed mouse treated with
200 mg/kg of metformin (MET200). Magnification: 20 x ; scale bar: 100 um. (B) Quantification of Ki67-positive cells within ileal crypts. (C) Villi length in ileal sections, expressed
in um. (D—E) Relative expression of Ccnd? (D) and Ngn3 (E) mRNA in ileal samples, measured by RT-qPCR and normalized to Tbp expression. (F) Representative images of
colonic sections stained for Ki67-positive cells (pink), with DAPI nuclear counterstaining (blue). Images are shown as in panel A. Magnification: 20 x ; scale bar: 100 um. (G)
Quantification of Ki67-positive cells per um2 of colonic crypt area. (H—I) Relative expression of Ccnd? (H) and Ngn3 (I) mRNA in colonic samples, measured by RT-qPCR and
normalized to Tbp expression. *p < 0.05; **p < 0.01; ***p < 0.001 (ANOVA) and #p < 0.01 (Tukey test, MET vs HFS condition).
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Figure 6: Metformin modulates caecal bile acid pool and inhibits Fxr—Fgf15 signaling pathway in the ileum of HFS-fed mice. (A) Quantification of bile acids in caecal
samples by HPLC-MS/MS, expressed as nmol of bile acids per gram of tissue. (B) Expression levels of genes involved in the Fxr—Fgf15 signaling pathway in ileal tissue. From left
to right: Fgf15, Nrob2, and Nr1h4 mRNA, measured by RT-qPCR, normalized to Tbp expression and expressed in arbitrary units. Data are presented as means + SEM.
*p < 0.05; **p < 0.01, ***p < 0.001 (ANOVA) and ® p < 0.05; *p < 0.01 (Tukey test, MET vs HFS condition).
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Figure 7: Metformin reduces hepatic ceramide levels. (A) Quantification of ceramide species in liver samples using LC-MS/MS, expressed as nmol of ceramides per gram of
protein. (B) Quantification of ceramides in plasma samples using the MxP® Quant 500 Kit (Biocrates), expressed in uM. (C) Expression levels of genes involved in ceramide
metabolism in liver tissue (Smpd3, Cers4, and Cers6), measured by RT-qPCR, normalized to Tbp expression and expressed in arbitrary units. Data are presented as

means + SEM. *p < 0.05; **p < 0.01, ***p < 0.001 (ANOVA) and ® p < 0.05; *p < 0.01 (Tukey test, MET vs HFS condition).
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Figure 8: Metformin alters the plasma concentration of selected microbiota-derived metabolites in HFS-fed mice. Quantification of plasma microbiota-derived me-
tabolites was performed using the MxP® Quant 500 Kit (Biocrates) and results are expressed in uM. From left to right and top to bottom: p-cresol sulfate, homo-L-arginine
(HArg), phenylacetylglycine (PAG), indoxyl sulfate (Indoxyl-SQ,), indole-3-propionic acid (3-IPA), and indole-3-acetic acid (3-IAA). Data are presented as means + SEM.

*¥p < 0.01, **¥p < 0.001 (ANOVA); *p < 0.01 (Tukey test, MET vs HFS condition).

unsaturations (Supplementary Fig. 7B). The p-cresol sulfate, markedly
increased by HFS feeding, was completely normalized by metformin
(Figure 8). Metformin also modulated homoarginine (HArg) and phe-
nylacetylglycine (PAG) levels. Conversely, several indole metabolites
(indoxyl-S04, 3-IPA and 3-IAA, known as microbial byproducts of
tryptophan) were strongly reduced under HFS diet but not restored by
metformin treatment (Figure 8).

3. DISCUSSION

The mechanism of action of the antidiabetic drug metformin remains
under discussion, although increasing evidence points to a pivotal role
of the gut [3—9]. To clarify how metformin-induced changes in the
intestinal tract contribute to glucose metabolism improvement, we
evaluated the effects of escalating doses of metformin administered
for 4 weeks in mice with metabolic impairments induced by 10 weeks
of HFS diet. Metformin restored glucose tolerance, fasting insulinemia
and HOMA-IR in a dose-dependent manner. Fasting glycemia was
only slightly reduced at the highest dose. We aimed to determine
whether several metformin-driven gut parameters followed a similar
dose—response trend.

The intestinal FXR pathway has recently gained attention for its role in
metabolic regulation. Intestine-specific Fxr gene invalidation [28] and
selective intestinal FXR inhibitors such as caffeic acid phenethyl ester

or glycine-BMCA protect against diet-induced metabolic alterations in
rodents [21,29]. We recently showed that a probiotic mixture
improving glucose metabolism in HFS-fed mice was associated with
ileal FXR inhibition [30]. A role for intestinal FXR in metformin’s
mechanism is supported by studies in type 2 diabetic patients, where
3-day metformin treatment increased fecal levels of glycoursodeox-
ycholic acid (GUDCA), an FXR antagonist [6]. Inhibition of Fxr in the
ileum downregulates its target genes, notably Fgfi5 (the rodent
ortholog of human FGF19), a key regulator of bile acid, lipid, and
glucose homeostasis [31]. We previously reported that metformin
markedly suppresses Fgf15 expression in HFS-fed mice after 8 days
[9], a finding consistent with decreased Fgf15 in metformin-treated
diabetic rats [32] and reduced plasma FGF19 in patients after
short-term metformin treatment [6].

In the present study, metformin robustly inhibited the Fxr—Fgf15 axis
in HFS-fed mice, but independently of the concentration used since
maximal inhibition occurred already at the lowest dose (MET50). This
effect may be the consequence of an inhibition of the ileal transport of
bile acids by metformin as classically reported both in animal and
human studies [17—20]. However, in mice fed an HFS diet, we found
a slight reduction of the total amount of caecal bile acids in the
presence of metformin, together with a marked increase in the tauro-
conjugated forms and changes in bile acid profile favoring FXR an-
tagonists over agonists, compared to the HFS condition (Figure 6A and
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Supplementary Fig. 5). These observations suggest that inhibition of
the Fxr—Fgf15 axis in the ileum of metformin-treated HFS mice may
result, at least in part, from the modification of luminal bile acid
composition. However, since we did not assess the dose—response
changes in bile acid profile, a direct link cannot be confirmed.
Alternatively, metformin may directly inhibit Fxr via AMPK activation,
as previously shown in liver and ileum [33]. Whatever the mechanism,
the well-known strong intestinal retention of metformin [34] could
potentially explained why Fxr inhibition was maximal even at the
lowest dose.

Inhibition of intestinal Fxr has been linked to reduced ceramide
synthesis, a pathway strongly associated to insulin sensitivity [21,29].
Xie et al. [21] showed that intestinal Fxr blockade reduced ceramide
production in gut and liver. In our study, metformin lowered hepatic
ceramide concentrations, particularly C16:0, C18:0, and C24:1 spe-
cies, which have been associated with insulin resistance in human
liver [35]. Like for ileal Fxr inhibition, this effect was dose-
independent, supporting the proposed link between intestinal Fxr
and the ceramide pathway [21]. Interestingly, plasma ceramides
remained unchanged upon metformin, suggesting a liver-specific
effect. Supporting this, Smpd3, encoding the key enzyme convert-
ing sphingomyelin to ceramide, was significantly downregulated by
metformin in liver tissue. Unlike ceramide levels, the effect on Smpd3
expression was dose-dependent, suggesting additional regulatory
mechanisms. Together, these findings support a model in which
metformin inhibits the intestinal Fxr—Fgf15 axis, via modulation of the
luminal bile acid metabolism and absorption, and/or AMPK activation,
leading to reduced hepatic ceramide levels. Given the known roles of
ceramides in insulin resistance [27] and Fgf15/19 in metabolic
regulation [31], these changes likely contribute to metformin anti-
diabetic effects. However, their lack of dose-dependence suggests
they are not the main drivers of the dose-dependent effects on
glucose tolerance and fasting insulinemia.

Several studies have shown that metformin increases GLP-1
(glucagon-like peptide-1) secretion in both rodents [36,37] and
humans [13,14], through entero-endocrine L-cell stimulation [36]. In
our study, metformin led to increased Gcg expression and to a higher
number of GLP-1-positive cells in the colon. This was paralleled by an
induction of Ngn3, encoding neurogenin 3, a key transcription factor
driving endocrine differentiation in the colon. Notably, Ngn3 expres-
sion followed a clear dose—response to metformin. However, directly
linking GLP-1 and metformin’s metabolic effects remains challenging
because GLP1 concentration was not measured in the present work
and previous studies using GLP-1 receptor knockout mice showed
that circulating GLP-1 levels do not fully account for metformin’s
impact on glucose tolerance in rodent models [37].

We also observed significant effects of metformin on intestinal
morphology and barrier integrity. Metformin increased ileal villus
length and the number of goblet cells in colonic crypts. Similar results
were described in a mouse model of radiation-induced enteropathy
[26], where metformin exerted protective effects on the intestinal
barrier. Our findings suggest that metformin enhances gut epithelial
renewal and defense in HFS-fed mice as well. Notably, Ccnd1 (Cyclin
D1), a regulator of epithelial proliferation, was dose-dependently
induced by metformin in the ileum, supporting a role in villus
elongation.

Gut microbiota is central to epithelial barrier maintenance, and
metformin’s protective effects in irradiation models were lost upon
antibiotic-induced microbiota depletion [38], indicating that micro-
biota plays a critical role in metformin action, as also supported by a
number of other studies [4—9]. In line, we observed important

metformin-induced changes in caecal microbiota composition. Most
of the taxa affected by metformin in this study overlapped with those
previously identified in rodents and humans [39]. In most cases,
metformin reversed HFS-induced alterations. A limited number of
bacteria were modified independently of the diet, including
B. hominis, E. avium, and E. coli (increased), and F. intestinalis and a
Muribaculaceae member (decreased).

In addition to a strong increase in A. muciniphila, metformin raised the
abundance of L. johnsonii, L. reuteri, L. murinus, F. rodentium,
C. guopingia, B. uniformis, B. hominis, and P. goldsteinii. These
species are generally associated with gut health and contribute to
beneficial metabolic effects through SCFA production, gut barrier
reinforcement, hormone regulation, and inflammation control
[23,39,40]. Some strains are under development as next-generation
probiotics for metabolic diseases [30,41—45]. Conversely, metfor-
min reduced many taxa from Lachnospiraceae and Oscillospiraceae.
Most downregulated genera have been linked to obesity or type 2
diabetes, such as Dorea [46], Bilophila [47], Desulfovibrio [39],
Acetatifactor [48], Robinsoniella [49], and Lachnoclostridium [50].
Surprisingly, some metformin-suppressed bacteria like Roseburia
[51], Intestinimonas [52], and Alistipes [53] have been associated
with metabolic benefits. This could be related to strain-specific
properties or to context-dependent effects.

Metformin induced distinct dose—response patterns among gut
bacteria. Some taxa, like Coprococcus, Acetatifactor muris, Rumini-
clostridium, and Intestinimonas (downregulated), or Otoolea muris
(upregulated), responded strongly to the lowest dose. Others,
including L. johnsonii, B. hominis, B. congogenis, and G. faecalis,
required the highest dose for modulation. Several bacteria exhibited
clear dose-dependent responses, such as L. reuteri, F. rodentium,
A. timonensis, B. uniformis, P. goldsteinii, P. excrementihominis, and
Guopingia (upregulated), and Mordavella, Robinsoniella, Bilophila,
A. finegoldii, and A. lactatifermentans (downregulated). These dose-
dependent responses suggest possible link between the regulation
of specific bacterial species and metformin’s effects on fasting insulin
levels and glucose tolerance.

Many of the upregulated bacteria are known for their beneficial roles in
gut health and metabolic regulation, including SCFA and indole pro-
duction, vitamin biosynthesis, and modulation of bile acids and
inflammation [22,23,54]. For example, a L. reuteri strain encodes over
200 genes related to metabolite production, including acetate, butyrate,
propionate, folate, and indoles [55]. In the present study, metabolomics
analysis revealed that metformin modified plasma concentrations of
several microbiota-derived metabolites. Most notably, metformin
abolished the HFS-induced elevation of p-cresol sulfate, a tyrosine-
derived uremic toxin linked to insulin resistance in muscle cells [56].
Metformin also partially rescued HFS-induced reduction in homo-
arginine, a protective metabolite against cardiometabolic risk [57].
However, metformin did not restore HFS-suppressed indole derivatives,
despite a strong induction of L. reuteri, which is known to produce
indoles with protective metabolic effects [58]. This suggests that indole
signaling is not a primary pathway in metformin’s beneficial action
under our experimental conditions. Although SCFAs were not quantified
in our study, previous reports showed that long-term metformin
treatment increased circulating acetate, butyrate, and valerate levels in
overweight adults, with acetate inversely correlating with fasting
insulinemia [25].

This study aimed to dissect how metformin-induced changes in the
intestinal tract contribute to improved glucose tolerance and reduced
hyperinsulinemia in HFS-fed mice. Metformin impact on these
metabolic parameters was clearly dose-dependent. Among the gut-
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related effects, only a subset, such as mucus production, epithelial
proliferation (Cyclin D1), endocrine differentiation (Ngn3), GLP-1
expression, and shifts in some key bacterial taxa, showed a parallel
dose—response pattern, supporting their involvement in metformin’s
metabolic improvement. In contrast, other changes, including ileal
Fxr-Fgf15 inhibition and hepatic ceramide reduction, did not scale
with dose, suggesting that they are not the main drivers of metformin
dose-dependent effects on glycemic control. However, considering
the importance of FXR and ceramides in insulin resistance, it is likely
that their modulation contributes to the global antidiabetic action of
metformin.

The study has some limitations. Because the different parameters
were not measured in the same experiments and the same animals,
and for some of them at only one metformin concentration, we did not
perform correlation analyses between metformin doses, gut param-
eters, and glucose/insulin endpoints, hence limiting the demonstra-
tion of causal relationships. Also, despite an increase in the number of
GLP-1-producing cells and stimulation of Gcg expression, the impli-
cation of GLP-1 cannot be firmly confirmed, since the circulating
concentration of GLP-1 was not measured. Finally, only male mice
were investigated, and thus it remains to determine whether sex
differences exist in the mechanism of action of metformin in this
model.

Despite these limitations, this study provides the first integrated anal-
ysis of metformin’s dose-dependent effects on various intestinal
functions, microbiota composition and host metabolism. The differential
sensitivity of gut bacteria to metformin offers new insights into the
drug’s mechanism and suggests potential microbial biomarkers or
targets for enhancing therapeutic efficacy. Further studies integrating
dose and time-course analyses are warranted to disentangle early
versus chronic effects of metformin, especially in light of recent evi-
dence supporting its acute metabolic benefits in both preclinical [59]
and clinical [60] contexts, and to fully understand how the gut-driven
mechanisms shape metformin antidiabetic action.

4. MATERIALS AND METHODS

4.1. Animals, diet and metformin treatment

Five-week-old male C57BL/6J/0Ola/Hsd mice (ENVIGO, Gannat,
France) were housed in a temperature-controlled room (22 + 2 °C)
with a 12 h light/dark cycle. After one week of adaptation, animals
were divided into six groups (n = 5 per group). The study was
repeated at least three times. Control mice (SD) received standard
chow (R16, GENOBIOS, Laval, France), while HFS groups were fed a
high-fat high-sugar diet (260 HFF, SAFE, Augy, France;
Supplementary Table 2) for 10 weeks. Metformin was then admin-
istered for 4 additional weeks via daily intragastric gavage, while
maintaining HFS feeding. Metformin (PHR1084, Sigma, France) was
delivered at 50, 100, or 200 mg/kg/day (MET50, MET100, MET200).
Metformin was administrated at the end of the light phase, before the
active feeding period. Control groups (SD and HFS) received water
gavage. A separate experiment used 300 mg/kg/day of metformin
(MET300) was also performed. All procedures followed ARRIVE
guidelines and European legislation (directive 86/609/EEC), and the
protocols were approved by the Rhone-Alpes Ethics Committee
(CECCAPP, protocol LS-2023-002).

4.2. Body composition measurement

Lean, fat, and fluid mass were assessed using a Bruker Minispec Plus
NMR analyzer (www.bruker.com), following the manufacturer’s
instructions.

Iy

MOLECULAR
METABOLISM

4.3. Glucose tolerance test (ipGTT)

After 6 h fasting, mice received an intraperitoneal injection of p-
glucose (1 g/kg). Blood glucose was measured at 15, 30, 45, 60, and
90 min post-injection. The glucose AUC was used to estimate glucose
tolerance, as previously described [9].

4.4. Glucose and insulin assays

Plasma glucose and insulin levels were quantified using Glucose-Glo
(Promega, France) and Ultrasensitive Insulin Assay (Eurobio Scientific,
France). HOMA-IR index was calculated as [(fasting plasma glucose x
Fasting serum Insulin)/22.5].

4.5. Blood and tissue sampling

After 6 h fasting, mice were euthanized by cervical dislocation. Blood
was collected, and ileum and colon were harvested, divided, and
processed either for RNA (flushed with PBS and frozen in liquid ni-
trogen) or for microbiota analysis (frozen unflushed). Caecum and liver
were collected and snap-frozen. Portions of liver, ileum, and colon
were fixed in 4% paraformaldehyde and paraffin-embedded.

4.6. Triglyceride assay

Lipids were extracted from 10 mg liver powder using the Lipid
Extraction Kit (ab211044, Abcam). Triglycerides were measured with
Biolabo reagent (87,319), following the manufacturer’s instructions
[30].

4.7. Gene expression analyses

Total RNA was extracted using TRI Reagent (T9424, Sigma). cDNA
was analyzed by RT-qPCR (Rotor-Gene, QIAGEN). Data were
normalized to Tbp mRNA as previously reported [9,30]. A standard
curve was included in all assays. PCR primers are listed in
Supplementary Table 3.

4.8. Bile acid profiling

Bile acids were quantified in 100 mg frozen caecum by HPLC-MS/MS
according to Humbert et al. [61] as previously reported [9,30]. Data
are expressed in nmol/g of wet tissue.

4.9. Microbiota analysis

Total DNA was extracted from different intestinal sections using the
ZymoBIOMICS DNA Microprep Kit, (D4300T, Zymo Research, France).
Library preparation and sequencing were outsourced to the GenEPII
platform (https://teamhcl.chu-lyon.fr/genepii), with the Quick-16S
Plus NGS Library Prep Kit (V3—V4) (Zymo research). Sequencing
was performed on lllumina MiSeq using a paired-end 2*300 strategy.
Quality of sequenced reads was determined using FastQC and se-
quences were then analyzed using an in-house QIIME2 based pipeline
(trimming, denoising and chimera filtering using the DADA2 plugin,
ASV annotation and taxonomic classification using scikit-learn). Raw
counts were then rarefied, Alpha and Beta diversities were calculated
under RStudio (2024.09.0 Build 375) using the phyloseq (v1.48.0)
library. MaAsLin2 (1.18.0) was used to identified differentially abun-
dant ASV. FASTQ data deposited in the French repository at
“Recherche.data.gouv.fr” accessible with the following link: https://
entrepot.recherche.data.gouv.fr/privateurl.xhtml?token=46ced6¢9-
7ddf-405a-a510-7bc45f77069d.

4.10. Lipid droplet and mucus staining

Liver sections (5 pm) were deparaffinized in xylene and rehydrated
through a graded ethanol series. Then, section were stained with He-
matoxylin/Phloxin for nuclear/cytoplasmic contrast; lipid droplets appeared
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as white voids. For mucus detection in colon, Alcian blue (B8438, Sigma
Aldrich) staining was performed. Images were acquired using Microscope
Olympus BX63 (Olympus, France) and analyzed with the CellSens
Dimension software (Olympus). Mucus area was quantified using ImageJ
and expressed as percentage of analyzed surface (villi + crypts).

4.11. Immunohistochemistry

Deparaffinized sections were rehydrated, and antigen-retrieved.
Slides were incubated for 2 h at room temperature with anti-GLP1
(ab23472) or anti-Ki67 (ab16667) (1:50; Abcam, France). Second-
ary antibodies (AF594 goat anti-mouse, A11005; AF594 goat anti-rat
IgG, A11012; 1:500, Invitrogen) were added for 1 h. Slides were
mounted with Mounting Medium with DAPI (ab104139, Abcam). Im-
ages were captured using Microscope Olympus BX63 and analyzed
with the CellSens Dimension software (Olympus).

4.12. Ceramide profiling

Liver ceramides were extracted with 2.5 mL chloroform/methanol
(1:2, v/v) containing internal standard (C17:0-ceramide, Avanti Polar
Lipids). After 2 h shaking and centrifugation (1900 g, 10 min, room
temp.), samples were dried under nitrogen, resuspended in 1 mL
chloroform/methanol, and analyzed via direct flow injection on a triple
quadrupole MS (APl 4500 QTRAP; Sciex) in MRM mode [62]. Total
ceramides were expressed as nmol/g liver protein.

4.13. Metabolomics analysis

Metabolomics was performed at the Metanutribiota platform (CarMeN lab,
Hopital Lyon-Sud). Plasma (10 pL) was analyzed using the MxP Quant 500
kit (Biocrates Life Sciences) on a XEVO TQ-XS® UPLC-MS system. Sample
preparation, QC, and quantification followed manufacturer instructions.
Data were processed with MassLynx® and WebIDQ™. Metabolites with
>20% missing values across all groups were excluded. Statistical analysis
was done in MetaboAnalyst 6.0. Data were autoscaled; PLS-DA identified
discriminant metabolites based on VIP scores.

4.14. Statistical analyses

Data are presented as mean = SEM. One-way ANOVA followed by
Tukey post-hoc test was used to compare Metformin-treated groups
to HFS controls (GraphPad Prism 9, GraphPad Software). Significance:
*p < 0.05, **p < 0.01, ***p < 0.001; $p < 0.05, #p < 0.01,
ap < 0.001 (Tukey test).
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